The number of runs in a string
نویسندگان
چکیده
منابع مشابه
On the Maximal Number of Cubic Runs in a String
A run is an inclusion maximal occurrence in a string (as a subinterval) of a factor in which the period repeats at least twice. The maximal number of runs in a string of length n has been thoroughly studied, and is known to be between 0.944n and 1.029n. The proofs are very technical. In this paper we investigate cubic runs, in which the period repeats at least three times. We show the upper bou...
متن کاملThe Number of Runs in a String: Improved Analysis of the Linear Upper Bound
A run (or a maximal repetition) in a string is an inclusionmaximal periodic segment in a string. Let ρ(n) be the maximal number of runs in a string of length n. It has been shown in [8] that ρ(n) = O(n), the proof was very complicated and the constant coefficient in O(n) has not been given explicitly. We propose a new approach to the analysis of runs based on the properties of subperiods: the p...
متن کاملa swot analysis of the english program of a bilingual school in iran
با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...
15 صفحه اولOn the maximal number of highly periodic runs in a string
A run is a maximal occurrence of a repetition v with a period p such that 2p ≤ |v|. The maximal number of runs in a string of length n was studied by several authors and it is known to be between 0.944n and 1.029n. We investigate highly periodic runs, in which the shortest period p satisfies 3p ≤ |v|. We show the upper bound 0.5n on the maximal number of such runs in a string of length n and co...
متن کاملNew Lower Bounds for the Maximum Number of Runs in a String
We show a new lower bound for the maximum number of runs in a string. We prove that for any ε > 0, (α− ε)n is an asymptotic lower bound, where α = 56733/60064 ≈ 0.944542. It is superior to the previous bound 3/(1+ √ 5) ≈ 0.927 given by Franěk et al. [1, 2]. Moreover, our construction of the strings and the proof is much simpler than theirs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 2007
ISSN: 0890-5401
DOI: 10.1016/j.ic.2007.01.007